uncertainties. We have no explanation, but it is widely recognized that the differences between experimental and calculated amplitudes are subject to greater fluctuations than, say, are structural differences obtained by different structural methods. In any case, these amplitude differences do not affect our conclusions about the structure.

Acknowledgment. This work was supported by the National Science Foundation under Grant CH84-11165. We thank Pro-
fessor K. Wiberg and Dr. W. Dailey for the sample of [1.1.1]propellane.

Registry No. [1.1.1]Propellane, 35634-10-7.
Supplementary Material Available: From each plate: tables of total intensities, final backgrounds, and molecular intensities (9 pages). Ordering information is given on any current masthead page.

Theoretical Study of the Stability of Molecular $\mathrm{P}_{2}, \mathrm{P}_{4}\left(T_{d}\right)$, and $\mathrm{P}_{8}\left(O_{h}\right)$

Reinhart Ahlrichs,* Stefan Brode, and Claus Ehrhardt
Contribution from the Institut für Physikalische Chemie und Elektrochemie, Lehrstuhl für Theoretische Chemie, Universität Karlsruhe, 7500 Karlsruhe, West Germany. Received February 21, 1985

Abstract

Results of ab initio calculations are reported for $\mathrm{P}_{2}, \mathrm{P}_{4}$, and P_{8} on the SCF level and with inclusion of valence correlation effects, except for P_{8}. Extended polarization basis sets are employed, up to (3 d 2 flg) for P_{2}, (2 d 1 f) for P_{4}, and (1 d) for P_{8}. R_{e} values obtained on the highest level of theory are in excellent agreement with experiment (in parentheses): $R_{e}\left(\mathrm{P}_{2}\right)=189.6$ $\mathrm{pm}(189.4), R_{e}\left(\mathrm{P}_{4}\right)=221 \mathrm{pm}(221 \pm 2)$. Computed reaction energies still suffer from basis saturation problems, $D_{e}\left(\mathrm{P}_{2}\right)=$ $437 \mathrm{~kJ} / \mathrm{mol}(490), \Delta E\left(\mathrm{P}_{4} \rightarrow 2 \mathrm{P}_{2}\right)=201 \mathrm{~kJ} / \mathrm{mol}$ (232). P_{8} is computed to be less stable than $2 \mathrm{P}_{4}$ by $158 \mathrm{~kJ} / \mathrm{mol}$. The remarkable stability of P_{4} is attributed to (i) a relatively small strain energy arising from 60° bond angles and (ii) stabilizing multicenter bonding closely connected to enhanced 3d contributions (as compared to P_{8}), which are typical for three-membered rings. P_{8} is destabilized by the repulsion between parallel PP bonds.

I. Introduction

The remarkable stability of the tetrahedral P_{4} molecule constitutes one of the so far not well understood pecularities of the chemistry of phosphorus and other group V elements such as arsenic. ${ }^{1}$ Despite the strain expected for 60° bond angles, one finds a $P-P$ bond energy of $\approx 200 \mathrm{~kJ} / \mathrm{mol}$ in P_{4}, which may be considered as typical for P-P bonds. ${ }^{1}$ Virtually no strain should be present in cubic P_{8}, but this molecule has never been observed.

Theoretical investigations have so far not been too successful to elucidate the just mentioned problems. Results of electronic structure salculations usually underestimate the stability of P_{4} with respect to $2 \mathrm{P}_{2}$ to a considerable extent. ${ }^{2,3}$ Trinquier et al. ${ }^{2}$ find P_{4} to be $125 \mathrm{~kJ} / \mathrm{mol}$ more stable than $2 \mathrm{P}_{2}$ (on the DZP SCF level), as compared to the experimental value of $228 \mathrm{~kJ} / \mathrm{mol}^{4}{ }^{4}$ The same authors obtained P_{8} to be $42 \mathrm{~kJ} / \mathrm{mol}$ more stable than $2 \mathrm{P}_{4}$, but it was argued quite convincingly that this result reflects merely basis set problems. The comparison of P_{4} and P_{8} could be done on the DZ SCF level only, and d functions should stabilize $2 \mathrm{P}_{4}$ more than $\mathrm{P}_{8}{ }^{2}{ }^{2}$

The availability of improved computer hardware, especially supercomputers, and of efficient program packages ${ }^{5}$ now opens the way for more accurate treatments of the relative stability of P_{2}, P_{4}, and P_{8} which will be reported in this work.

II. Details of Computation

The computations were performed with the Karlsruhe version ${ }^{5}$ of the Columbus system of programs, ${ }^{6-8}$ which has been especially

[^0]adapted for the CYBER 205. Effects of valence electron correlation were included for the smaller systems $\mathrm{P}, \mathrm{P}_{2}$, and P_{4} (P_{8} could only be treated on the SCF level) by means of the recently developed coupled pair functional method (CPF). ${ }^{9}$ The CPF procedure is based on the variation of an energy functional derived from the $\mathrm{CI}(\mathrm{SD})$ energy expression by the introduction of partial normalization denominators in order to achieve size extensivity for the energy. The CPF method is related to CEPA-1 $1^{10,11}$ and has already proved useful in various applications. ${ }^{9,12,13}$

The following CGTO basis sets were employed:

$$
(\mathrm{s}, \mathrm{p}):(11,7) /[6,4]^{14}
$$

polarization sets:
(1d)

$$
\eta(\mathrm{d})=0.4
$$

(2d lf)

$$
(\mathrm{d})=0.23,0.7 ; \eta(\mathrm{f})=0.5
$$

(3d2flg)

$$
\begin{gathered}
(\mathrm{d})=0.167,0.468,1.307 \\
\eta(\mathrm{f})=0.252,0.919 \\
\eta(\mathrm{~g})=0.585
\end{gathered}
$$

The (1d) orbital exponent η is optimal for P_{2} on the CPF level

[^1]Table I. Computed Total Energies and Equilibrium Distances for P, $\mathrm{P}_{2}\left(D_{\infty h}\right), \mathrm{P}_{4}\left(T_{d}\right)$, and $\mathrm{P}_{8}\left(\mathrm{O}_{h}\right)$ on Various Levels of Approximation ${ }^{a}$

system	state	basis ${ }^{\text {b }}$	SCF		CPF	
			$R_{\text {e }}$	-E	$R_{\text {e }}$	-E
P	${ }^{4} S_{u}$	2 d lf		340.67681		340.77907
P	${ }^{4} S_{u}$	3d2flg		340.67681		340.78208
P_{2}	${ }^{1} \sum_{8}+$	1 d	3.521	681.40262	3.636	681.65724
P_{2}	${ }^{1} \sum_{8}^{8}+$	2 d 1 f	3.507	681.41345	3.600°	681.71404
P_{2}	${ }^{1} \sum_{8}^{\text {b }}$	3d2fıg			3.583	681.73051
P_{4}	${ }^{1} \mathrm{~A}_{1}$	Id	4.160	1362.86288	4.239	1363.36609
P_{4}	${ }^{1} \mathrm{~A}_{1}$	2 d 1 f	4.120	1362.89620	$4.170^{\text {d }}$	1363.50471
P_{8}	${ }^{1} \mathrm{~A}_{8}$	1d	4.330	2725.66578		

${ }^{a}$ All quantities in au. ${ }^{b}$ Polarization functions employed in addition to the (11,7)/[6,4] sp basis as explained in the text. ${ }^{c}$ Experimental result, R_{e} $=1.894 \AA=3.579 a_{0}{ }^{17}{ }^{\text {d }}$ Experimental result, $R_{\mathrm{e}}=221 \pm 2 \mathrm{pm}=4.18 a_{0} \pm 0.04 a_{0} .{ }^{19}$

Table II. Computed Reaction Energies, in $\mathrm{kJ} / \mathrm{mol}^{a}$

reaction	method b	ΔE
$\mathrm{P}_{2} \rightarrow 2 \mathrm{P}$	CPF (2dlf)	409.4
	CPF (3d2flg)	436.8^{c}
$\mathrm{P}_{4} \rightarrow 2 \mathrm{P}_{2}$	SCF (1d)	151.4
	SCF (2dlf)	182.0
	CPF (1d)	135.5
	CPF (2dlf)	201.2^{d}
$\mathrm{P}_{8} \rightarrow 2 \mathrm{P}_{4}$	SCF (1d)	-157.5

${ }^{a}$ As obtained from the results listed in Table I. ${ }^{b}$ Method of computation and basis set used, see Table I and text. ${ }^{c}$ Experimental result $D_{0}=5.03 \mathrm{eV}=485.6 \mathrm{~kJ} / \mathrm{mol}, D_{\mathrm{e}}=490 \mathrm{~kJ} / \mathrm{mol} .{ }^{17}{ }^{d}$ Experimental ΔH at $298.15 \mathrm{~K}: 54.59 \mathrm{kcal} / \mathrm{mol}=228 \mathrm{~kJ} / \mathrm{mol}, \Delta E=232 \mathrm{~kJ} / \mathrm{mol}^{4}{ }^{4}$
and for P_{4} on the SCF and CPF levels. (The optimized $\eta(\mathrm{d})$ for P_{2} SCF is slightly smaller: $\eta \approx 0.38$.) The orbital exponents of the larger polarization sets were obtained from the (1d) by means of a proven scaling procedure. ${ }^{15,16}$ Only valence orbitals were correlated in the CPF calculations, and one high-lying virtual MO per P atom was kept frozen.

III. Energies and Equilibrium Distances

The computed electronic energies and equilibrium distances are collected in Table I and the corresponding reaction energies in Table II.

The present results for P_{2} mainly demonstrate the basis saturation problems encountered in CI-type treatments and show a similar state of affairs as found for first row diatomics. ${ }^{9,13}$ On the (2 d 1 f) CPF level R_{e} is still predicted too large by $0.02 a_{0}$, and D_{e} too small, by $81 \mathrm{~kJ} / \mathrm{mol}=0.8 \mathrm{eV} .{ }^{17}$ The large (3 d 2 flg) polarization basis virtually reproduces the experimental R_{e}, up to $0.004 a_{0}$, but yields D_{e} still $53 \mathrm{~kJ} / \mathrm{mol}$ too small. Although further basis set extension will certainly increase the computed D_{e}, the CPF method appears to underestimate D_{e} even in the complete basis set limit. ${ }^{9.13}$ The most elaborate previous calculation for P_{2} has been published by McLean et al., ${ }^{18}$ who performed CI(SD) calculations employing an ($8,6,3,2$) STO basis. Their best results were obtained if cluster corrections were included by Davidson-type procedures which yield $D_{\mathrm{e}}=1.892$ to 1.897 eV , depending on the actual procedure used. These results, $D_{\mathrm{e}} \approx 408$ $\pm 7 \mathrm{~kJ} / \mathrm{mol}$, are close to the present (2d1f) CPF value, $D_{\mathrm{e}}=409$ $\mathrm{kJ} / \mathrm{mol}$.

It should be kept in mind that D_{e} is difficult to compute for diatomics, since one has to compare the energy of $\mathrm{P}_{2}\left({ }^{1} \sum_{\mathrm{g}}\right)$ with that of $2 \mathrm{P}\left({ }^{4} \mathrm{~S}_{u}\right)$. The atomic correlation energy is relatively small, and a large fraction of the correlation energy of P_{2} is of extramolecular type, i.e., no appreciable cancellation of errors can be expected.

The situation is certainly much better for P_{4} vs. $2 \mathrm{P}_{2}$ or P_{8} vs. $2 \mathrm{P}_{4}$, since all systems have a closed shell structure and errors due

[^2]to basis saturation effects will cancel to a much larger extent.
The computed reaction energies for $2 \mathrm{P}_{2} \rightarrow \mathrm{P}_{4}$, Table II, show somewhat unsystematic variations at first glance. On the SCF level one finds a pronounced influence of functions: ΔE increases from $151 \mathrm{~kJ} / \mathrm{mol}$ (1d) to $182 \mathrm{~kJ} / \mathrm{mol}$ (2 dlf)-the second d set is of little importance as has been checked by additional calculations. The relatively large effect of functions indicates bond strain in P_{4} : contributions of f (and d) functions to MOs help to increase the overlap of AOs in the case of small bond angles.

Comparing the computed SCF and CPF reaction energies for $2 \mathrm{P}_{2} \rightarrow \mathrm{P}_{4}$ one finds a decrease from 151 to $136 \mathrm{~kJ} / \mathrm{mol}$ for the (1d) set but an increase from 182 to $201 \mathrm{~kJ} / \mathrm{mol}$ for the (2 d lf) set. This may be rationalized in the following way. P_{2} has high-lying occupied π and low-lying empty π^{*} MOs, and near degeneracy effects are of great importance. The latter are already rather well described on the (1d) level. Dynamic correlation is of more importance for P_{4}, which requires a large polarization set for a proper description. It is thus expected that the result from the most elaborate calculation, CPF (2dIf)

$$
\begin{equation*}
\Delta E\left(\mathrm{P}_{4} \rightarrow 2 \mathrm{P}_{2}\right)=201.2 \mathrm{~kJ} / \mathrm{mol} \tag{1}
\end{equation*}
$$

should increase on further basis set extension. This would reduce the remaining discrepancy to the experimental result

$$
\begin{equation*}
\Delta E=232 \pm 2 \mathrm{~kJ} / \mathrm{mol} \tag{2}
\end{equation*}
$$

which is obtained from the $\Delta H_{\mathrm{f}}{ }^{\circ}$ of P_{2} and P_{4} with the aid of the known $\omega_{\mathrm{e}}{ }^{4}{ }^{4}$

The (2dIf) CPF result for R_{e}

$$
\begin{equation*}
R_{\mathrm{e}}\left(\mathrm{P}_{4}\right)=4.17 a_{0}=221 \mathrm{pm} \tag{3}
\end{equation*}
$$

is in perfect agreement with the only available experimental value of $221 \pm 2 \mathrm{pm} .{ }^{19}$ Since further basis set extension is expected to decrease the computed R_{e}, as has been discussed above for P_{2}, the present results suggest

$$
\begin{equation*}
R_{\mathrm{e}}\left(\mathrm{P}_{4}\right)=219.7 \pm 0.5 \mathrm{pm} \tag{4}
\end{equation*}
$$

as the most probable value.
The present results finally show cubic P_{8} to be markedly less stable than $2 \mathrm{P}_{4}$, by $158 \mathrm{~kJ} / \mathrm{mol}$ on the (1d) SCF level. It is hard to imagine that this energetic ordering could be reversed by employing more extended basis sets or by effects of electron correlation. It should be noted that one rather expects P_{4} to be more stabilized than P_{8} if f functions are included. The unusually large $\mathrm{P}-\mathrm{P}$ distance

$$
\begin{equation*}
R_{\mathrm{e}}\left(\mathrm{P}_{8}\right)=4.33 a_{0}=229 \mathrm{pm} \tag{5}
\end{equation*}
$$

obtained on the SCF level also indicates P_{8} to be rather high in energy and reactive. Some additional calculations were performed with the relatively small (11,7)/[6,4] basis set. Cubic P_{8} was found to be stable against distortions within $D_{2 d}$ symmetry on the SCF level. (A quadratic antiprism leads to a triplet ground state-two electrons in the e-type HOMO-which is hardly expected to be a stable and nonreactive molecular state.) Effects of electron correlation (on the CPF level for the small basis) increased the

[^3]

Figure 1. Schematic representation and phase convention of MOs describing a PP σ bond (a), π bond (b), and a banana (c) bond as described in the text.
energetic separation between P_{8} and $2 \mathrm{P}_{4}$. Although small basis set results should be considered with care, the additional calculations strongly indicate that the instability of P_{8} with respect to $2 \mathrm{P}_{4}$ is not just an artefact of the SCF method.

IV. Electronic Structure of \mathbf{P}_{4} and $\mathbf{P}_{\mathbf{8}}$

The experimental as well as the present theoretical results show the presence of six normally strong PP bonds in P_{4} : a bond energy of $\approx 200 \mathrm{~kJ} / \mathrm{mol}$ (one-sixth of the atomization energy) and a bond distance of $220 \mathrm{pm} . \mathrm{P}_{8}$ is computed to be $158 \mathrm{~kJ} / \mathrm{mol}$ higher in energy than $2 \mathrm{P}_{4}$, Table II, which implies its PP bonds to be 13 $\mathrm{kJ} / \mathrm{mol}$ or 6% less stable than those in P_{4}. This situation appears to be typical for phosphorus chemistry for which P_{3} (as well as P_{5} and P_{6}) rings are quite common ${ }^{20}$ whereas P_{4} rings are rather exceptional. This makes it worthwhile to analyze the electronic structure of P_{4} and P_{8} in more detail. For this purpose we will attempt to assess in a semiquantitative way the most likely effects coming into play: bond strain arising from 60° angles in P_{4}, repulsion between bonds (especially in P_{8}), and the role of 3 d participation.

Some useful facts are provided by the results of the Mulliken population analysis ${ }^{21}$ which yields the following valence shell gross occupations at the R_{e} given in eq 3 and 5 .

$$
\begin{gather*}
\mathrm{P}_{4}: \quad 3 \mathrm{~s}^{1.85} 3 \mathrm{p}^{2.95} 3 \mathrm{~d}^{0.20}\left(4 \mathrm{f}^{0.02}\right) \tag{6}\\
\mathrm{P}_{8}: \quad 3 \mathrm{~s}^{1.80} 3 \mathrm{p}^{3.06} 3 \mathrm{~d}^{0.14} \tag{7}
\end{gather*}
$$

Deviations from the free atom occupations $3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$, are small. Bonding in P_{4} and P_{8}-like in other normal valent P compounds-involves mainly the 3 p AOs , as expected. However, hybridization is slightly more pronounced in P_{8}, where 3 s electrons are promoted into 3 p and 3 d , whereas 3 s and 3 p electrons are promoted into 3 d AOs in P_{4}.

In order to get more detailed informations we have performed additional SCF calculations designed to quantify-as much as possible-effects of bond strain, bond repulsions, and 3d participation, which will be discussed in subsections a-c.
(a) The $\sigma(3 \mathrm{p})$ Model. ${ }^{22}$ In these calculations we have enforced σ bonds constructed from $3 \mathrm{p} \mathrm{AOs;}{ }^{23}$ the corresponding bond orbitals will be denoted $\sigma(3 \mathrm{p})$. The construction of $\sigma(3 \mathrm{p})$ is straightforward for cubic P_{8} where bonds are aligned along the PP axes, as shown schematically in Figure 1a. For P_{4} one is led

[^4]

Figure 2. Schematic representation of the polarizing effects of a $\sigma^{*}(3 \mathrm{p})$ admixture to MOs for a P_{4} ring. a and b depict MOs constructed from 3 s AOs and $\sigma(3 \mathrm{p})$ bond orbitals, which are bonding between centers $\mathrm{a}-\mathrm{b}$ and $c-d$ and antibonding between $a-c$ and $b-d$. These MOs interact with $\sigma^{*}(3 p)$ orbitals of bonds $a-c$ and $b-d$, shown in c. The polarizing effect on the MOs in parts a and b is indicated by arrows.
to bent or banana bond orbitals, denoted $|\mathrm{BB}\rangle$, which have the explicit representation, in the nomenclature of Figure I

$$
\begin{align*}
& |\mathrm{BB}\rangle= \\
& \left.\quad N|3 \mathrm{p} \sigma(\mathrm{a})\rangle+|3 \mathrm{p} \sigma(\mathrm{~b})\rangle+1 / 8^{1 / 2}[|3 \mathrm{p} \pi(\mathrm{a})\rangle+|3 \mathrm{p} \pi(\mathrm{~b})\rangle]\right\} \tag{8}
\end{align*}
$$

The structure of $|\mathrm{BB}\rangle$ is uniquely determined by the requirement that the six PP bonds in P_{4} should be equivalent.

The $\sigma(3 \mathrm{p})$ model suppresses hybridization: the $\sigma(3 \mathrm{p})$ orbitals are doubly occupied, yielding a gross occupation of 1.0 for either 3 p AO and a total valence occupation $3 s^{2} 3 \mathrm{p}^{3}$, as in the free atom.

The $\sigma(3 \mathrm{p})$ model predicts P_{4} to be markedly more stable than P_{8} at the typical PP distance of 222 pm assumed for either molecule.

$$
\begin{equation*}
\sigma(3 \mathrm{p}) \text { model: } \quad E\left(\mathrm{P}_{8}\right)-2 E\left(\mathrm{P}_{4}\right)=556 \mathrm{~kJ} / \mathrm{mol} \tag{9}
\end{equation*}
$$

The energy difference has to be attributed to effects of bond strain and bond repulsions-since the molecules are treated on the same footing in all other respects-and it shows bond repulsion effects in P_{8} to outweigh considerably the possible strain in P_{4}. An estimate of the bond strain in P_{4} can be obtained from the structure of $|\mathrm{BB}\rangle$, eq $8 .|\mathrm{BB}\rangle$ has $\approx 89 \% \sigma$ character (σ bond strength ≈ 200 $\mathrm{kJ} / \mathrm{mol}^{1}$) and $\approx 11 \% \pi$ character (π bond strength $\gtrsim 100 \mathrm{~kJ} / \mathrm{mol}^{1}$), which leads to a bond strength of $\approx 190 \mathrm{~kJ} / \mathrm{mol}$ for a banana bond $|B B\rangle$. This implies a bond strain of only about $10 \mathrm{~kJ} / \mathrm{mol}$ per bond and

$$
\begin{equation*}
\text { total bond strain of } P_{4} \approx 60 \mathrm{~kJ} / \mathrm{mol} \tag{10}
\end{equation*}
$$

The surprisingly small strain energy basically results from the fact that bonding in P_{4} involves dominantly the 3 p AOs.

An enormous bond repulsion of about $680 \mathrm{~kJ} / \mathrm{mol}$ is suggested for P_{8} within the $\sigma(3 \mathrm{p})$ model according to eq 9 and 10. Adjacent parallel bonds in P_{8} should in fact repel each other quite strongly since they are separated by a PP bond distance only ($\approx 222 \mathrm{pm}$), which is much smaller than the PP van der Waals distance (360 pm). Since 12 such interactions are present in P_{8}, one gets a rough estimate of $\approx 57 \mathrm{~kJ} / \mathrm{mol}(=680 / 12)$ for the repulsion between adjacent parallel $\sigma(3 \mathrm{p})$ bonds.
(b) The $\sigma(3 \mathrm{p})$ Plus $\sigma^{*}(3 \mathrm{p})$ Model. Next we performed calculations which included the $\sigma^{*}(3 \mathrm{p})$ orbitals in addition to $\sigma(3 \mathrm{p})$, i.e., all 3 p AOs were included in the basis set. The $\sigma^{*}(3 \mathrm{p})$ orbitals lead only to a minor lowering of the SCF energy of P_{4}, by 112 $\mathrm{kJ} / \mathrm{mol}$, but to a drastic stabilization of P_{8}, by $742 \mathrm{~kJ} / \mathrm{mol} . \mathrm{P}_{8}$ is now only marginally less stable than P_{4}

$$
\begin{equation*}
\sigma(3 \mathrm{p}) \text { plus } \sigma^{*}(3 \mathrm{p}): \quad E\left(\mathrm{P}_{8}\right)-2 E\left(\mathrm{P}_{4}\right)=39 \mathrm{~kJ} / \mathrm{mol} \tag{11}
\end{equation*}
$$

again at $R=222 \mathrm{pm}$ for both molecules. P_{8} is even more stable than P_{4} on this level if R is optimized, in agreement with the result of Trinquier et al. ${ }^{2}$ The modest stabilization of P_{4} by $\sigma^{*}(3 p)$ orbitals indicates this molecule to be rather well described by the $\sigma(3 \mathrm{p})$ model.
The contributions of $\sigma^{*}(3 \mathrm{p})$ orbitals are obviously very effective in reducing bond repulsions in P_{8}. The corresponding mechanism is depicted schematically in Figure 2 for the case of a quadratic P_{4} ring. Since $\sigma^{*}(3 \mathrm{p})$ orbitals have a nodal surface passing through

Figure 3. Contour lines of the highest occupied $t_{2} \mathrm{MO}$ of P_{4} in the plane going through the center of the tetrahedron and two corners occupied by P_{a} and $P_{b} . P_{c}$ and P_{d} are above and below the plane in the lower part of the figure. The lines plotted correspond to 0 (dashed), $\pm 0.04, \pm 0.06$, $\pm 0.09 \mathrm{au}$.
the bond center, they interact only with MOs showing a corresponding node. (This holds strictly for highly symmetric molecules, e.g., cubic P_{8}, and in an approximate way for lower symmetries.) The effect of $\sigma^{*}(3 \mathrm{p})$ admixture is clearly to polarize density out of the nodal area and thus to relieve the destabilizing effect of the nodal surface.

The net effect of the $\sigma^{*}(3 \mathrm{p})$ admixture is in any case that the originally straight $\sigma(3 \mathrm{p})$ bonds assume a slightly bent shape in order to reduce repulsion effects. In this context it should be noted that the $\sigma^{*}(3 \mathrm{p})$ contributions, Figure 2 c , which polarize the minus combination of $\sigma(3 \mathrm{p})$ orbitals, Figure 1 b , are of π type with respect to these $\sigma(3 \mathrm{p})$ orbitals, which justifies to speak of a $\sigma-\pi$ interaction. The admixture of $\sigma^{*}(3 \mathrm{p})$ orbitals to MOs originally formed from 3s AOs is responsible for the slight hybridization discussed in connection with the results of the population analysis.
(c) Importance of 3d Participations. The most extensive SCF calculations performed within this study included s, p, and d functions and predict $2 \mathrm{P}_{4}$ to be $158 \mathrm{~kJ} / \mathrm{mol}$ more stable than P_{8} as has been discussed in section III. The 3 d contributions definitely tip the balance in favor of P_{4}. This trend is expected since the stabilizing effect of 3d functions is usually more pronounced for "strained" molecules. It is instructive to discuss this effect for the occupied $t_{2}(3 p) \mathrm{MO}$-the $\mathrm{t}_{2} \mathrm{MO}$ arising from 3 p AOs -of P_{4}, which plays a crucial role since one-half of the occupied MOs arising from $3 p$ AOs (a_{1}, t_{2}, and e, compare Figure 6 below) are of this type.

The contour diagram of a $\mathrm{t}_{2} \mathrm{MO}$ of P_{4} is shown in Figure 3; its relevant features are depicted schematically in Figure 4. The $\mathrm{t}_{2}(3 \mathrm{p}) \mathrm{MOs}$ are basically the minus combination of two-center banana bonds referring to opposite edges of the tetrahedron. Since the $3 p$ subshells give rise to two sets of t_{2} orbitals, there is one variational parameter for the occupied $\mathrm{t}_{2}(3 \mathrm{p}) \mathrm{MO}$ which may be chosen as the tilt angle α defined in Figure 4. The t_{2} (3p) MOs are characterized by the following interactions: (i) bonding within the banana bonds which is strongest for $\alpha=0$, i.e., a straight $3 \mathrm{p} \sigma$ bond; (ii) the node passing through the molecular center (required by symmetry), which is only weakly destabilizing for $\alpha \approx 45^{\circ}$ but becomes strongly destabilizing for negative α; and (iii) the nodal surface does not separate the banana bonds completely and there is a stabilizing (in phase) interaction of the outer lobes of one banana bond with the central region of the other one which is strongest for $\alpha \approx 30^{\circ}$. This is a pecularity of tetrahedral molecules and three-membered rings (it does not occur for four-membered rings), which counteracts the destabilizing effect ii.

The contributions of 3 d AOs now polarize the lobes of 3 p AOs toward the molecular center, as indicated in Figure 4, thus increasing the overlap within the banana bonds and in the outer region which clearly stabilizes the $t_{2}(3 p)$ MO. This mechanism is especially efficient in connection with the appropriate variational adjustment of the tilt angle α. No comparable effect is present for P_{8}.
(d) Localized Bond Orbitals and Shared Electron Numbers (SEN). As a summary and confirmation of the preceding dis-

Figure 4. Schematic representation of bonding and antibonding effects for a $\mathrm{t}_{2}(3 \mathrm{p}) \mathrm{MO}$ of P_{4} as discussed in the text. The dotted line indicates an antibonding interaction between the constituting banana bonds and the broken lines indicate a bonding interaction. The arrows indicate the polarization effected by admixture of 3 d AOs. Compare also the contour diagram given in Figure 3.

Figure 5. Contour lines of localized bond orbitals: (a) for P_{4}, in the face of the tetrahedron; (b) for P_{8}, in the face of the cube. The following lines are plotted: 0 (crossed), $\pm 0.01, \pm 0.03, \pm 0.08, \pm 0.2$ au. (c) Schematic representation of dominant features of a, which shows the banana bond between centers $\mathrm{a}-\mathrm{b}$ and the weak $3 \mathrm{p} \pi-3 \mathrm{~d} \pi$ bond between $\mathrm{a}-\mathrm{c}$ and $\mathrm{b}-\mathrm{c}$.
cussions let us finally consider the contour diagrams of localized MOs (LMO) ${ }^{24}$ and the SEN provided by the population analysis based on occupation numbers. ${ }^{25-28}$

The bond orbitals shown in Figure 5 show the pronounced banana shape for P_{4} and a slight bending for P_{8} in agreement with the above discussion.

More instructive is a consideration of the nodes of LMOs which are reliable indicators of repulsions between bond (and lone pair) orbitals. The bond orbital of P_{8} shows in fact a nodal surface which separates it from the parallel adjacent bond, which represents bond repulsion. However, this separation is not pronounced and the

[^5]LMO has a complicated structure at the atoms outside the bond. These features display the appreciable $\sigma^{*}(3 \mathrm{p})$ or π contributions to MOs of P_{8} discussed in subsection b .

Quite a different situation is met in P_{4} : the LMO, Figure 5, shows no obvious signs of repulsion effects. The dominant nodal surface connects the nodes of the 3 p AOs which form the banana bond. This node and a second minor one almost meet at the external atom where the LMO is of 3d type-with small s contributions. Besides the (strong) banana bond one thus has additional weak bonding effects of $3 \mathrm{p} \pi-3 \mathrm{~d} \pi$ type between the bond atoms and the external atoms, as is shown schematically in Figure 5 c . This is an unusual situation which has to be interpreted as a multicenter bonding effect. It expresses in terms of LMOs the effects discussed in subsection c: the interplay of 3d contributions and the optimal tilt angle α allow a reduction of the destabilizing effect of the central node of the $t_{2}(3 p) \mathrm{MO}$ and the enhancement of the bonding effects within the banana bonds and in the outer region.

The population analysis based on occupation numbers ${ }^{25-28}$ characterizes the bond strength by means of the SEN referring to pairs, triples, etc., of atoms. The two-center SEN has been shown to be a reliable measure of bond strength. ${ }^{28}$ The following results were obtained
P_{4} :

$$
\begin{gather*}
\operatorname{SEN}(P P)=1.36 \tag{12}\\
\operatorname{SEN}(P P P)=0.25 \tag{13}\\
\operatorname{SEN}(P P P P)=0.15 \tag{14}
\end{gather*}
$$

P_{8} :

$$
\begin{equation*}
\operatorname{SEN}(P P)=1.15 \tag{15}
\end{equation*}
$$

Multicenter SENs of P_{8} are small, typically 0.04 . The two-center SEN, eq 12 and 15 , indicate a normal bond strength for P_{4} and a weaker single bond in P_{8}. This judgment emerges from a comparison with typical SENs: strong σ bonds ($\mathrm{H}-\mathrm{H}, \mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}$) typically have $\mathrm{SEN} \approx 1.4$, weak σ bonds have $\mathrm{SEN}=0.9\left(\mathrm{Cl}_{2}\right)$ to $0.6\left(\mathrm{~F}_{2}\right)$. The multicenter SENs for P_{4} are unusually large. Three-center SENs are typically in the order of 0.01 , except for compounds such as $\mathrm{B}_{2} \mathrm{H}_{6}$, where $\mathrm{SEN}(\mathrm{BHB})=0.7$. The results of the population analysis are perfectly in line with the conclusions drawn in this section.
The SCF orbital energies shown in Figure 6 mainly show a markedly increased "bandwidth" of 3 s and 3 p bands in P_{8} as compared to P_{4}, which leads to overlapping 3 s and 3 p bands in P_{8}. This results partly from the larger number of interacting atoms in P_{8} and partly from increased $3 \mathrm{~s}-3 \mathrm{p}$ interactions (hybridization) in P_{8} as discussed above.

V. Summary

The so far most elaborate and most accurate calculations for P_{2}, P_{4}, and P_{8} have been reported and discussed. It turns out that polarization basis sets larger than (2 d 1 f) are required and that effects of electron correlation have to be included if reaction energies are to be computed with an accuracy of $10 \mathrm{~kJ} / \mathrm{mol}$ (see

Figure 6. Computed valence shell SCF orbital energies of $\mathrm{P}_{4}\left(T_{d}\right)$ and $\mathrm{P}_{8}\left(O_{h}\right)$.

Tables I and II). The computed R_{e} for P_{2} and P_{4} on the highest level considered in this work are in excellent agreement with available experimental data.

For the stability of P_{4} it is essential that the strain energy caused by 60° angles is relatively small, only about $60 \mathrm{~kJ} / \mathrm{mol}$, since bonding mainly involves 3 p AOs. The pronounced stabilization through 3d contributions which leads, in connection with the tetrahedral structure, to multicenter bonding effects is decisive. It thus appears that $\mathrm{P}_{4}\left(T_{d}\right)$ is the natural molecular state of phosphorous, as is As_{4} for arsenic. This reasoning does not only hold for tetrahedral P_{4}, it basically carries over to rationalize the stability of P_{3} rings in general.

Cubic P_{8} is found to be higher in energy than $2 P_{4}$, which is partly attributed to the repulsion of parallel PP bonds. ${ }^{2}$ This is consistent with the large PP distance computed for cubic $\mathrm{P}_{8}, R_{\mathrm{e}}$ $=4.33 a_{0}=229 \mathrm{pm}$, which is already on the way to the value found in the metallic primitive cubic modification of phosphorus, $R_{\mathrm{e}}=$ 238 pm . It is interesting to note that black phosphorus, the most stable solid state form reduces bond repulsions by means of bond angles of 96.5° and 102°, which keep the bonds in the double layer apart (in a localized description).

Acknowledgment. The authors thank Prof. V. Staemmler for a valuable discussion and H. Schiffer for helpful assistance in performing the calculations. The computations were performed at the "Rechenzentrum der Universität Karlsruhe"; the present work has greatly benefitted from the excellent service provided by this institution. This work has been supported in part by the Fonds der Chemischen Industrie.

Reglstry No. $\mathrm{P}_{2}, 12185-09-0 ; \mathrm{P}_{4}, 12185-10-3 ; \mathrm{P}_{8}, 78998-14-8$.

[^0]: (1) Kutzelnigg, W. Angew. Chem. 1984, 96, 262.
 (2) Trinquier, G.; Malrieu, J.-P.; Daudey, J.-P. Chem. Phys. Lett. 1981, 80, 552.
 (3) Wedig, U.; Stoll, H.; Preuss, H. Chem. Phys. 1981, 61, 127.
 (4) Stull, D. R.; Frophet, H.; et al. "JANAF Thermochemical Tables";

 Dow Chemical Corp.: Springfield, UA, 1971.
 (5) Ahlrichs, R.; Böhm, H. J.; Ehrhardt, C.; Scharf, P.; Schiffer, H.; Lischka, H.; Schindler, M. J. Comput. Chem. 1985, 6, 200.
 (6) Dupuis, M.; Rys, J.; King, H. F. J. Chem. Phys. 1976, 65, 111. Rys, J.; Dupuis, M.; King, H. F. J. Comput. Chem. 1983, 4, 154.

[^1]: (7) Pitzer, R. M. J. Chem. Phys. 1973, 58, 3111.
 (8) Lischka, H.; Shepard, R.; Brown, F. B.: Shavitt, I. Int. J. Quantum Chem. Quantum Chem. Symp. 1981, 15, 91.
 (9) Ahlrichs, R.; Scharf, P.; Ehrhardt, C. J. Chem. Phys. 1985, 82, 890.
 (10) Meyer, W. J. Chem. Phys. 1973, 58, 1017.
 (11) Ahlrichs, R. In "Methods in Computational Molecular Physics"; Diercksen. G. H. F., Wilson, S., Eds.; Reidel: Dordrecht, 1983.
 (12) Scharf, P.;, Brode, S.: Ahlrichs, R. Chem. Phys. Lett. 1985, 113, 447.
 (13) Ahlrichs, R.; Scharf, P.; Jankowski, K. Chem. Phys. 1985, $98,381$.
 (14) Huzinaga, S. "Approximate Atomic Functions"; Technical Report, University of Alberta, Canada, 1971; Vol. II.

[^2]: (15) Ahlrichs, R.; Taylor, P. Chem. Phys. 1982, 72, 287.
 (16) Ahlrichs, R.; Keil, F.; Lischka, H., Kutzelnigg, W.; Staemmler, V. J. Chem. Phys. 1975, 63, 455.
 (17) Huber, K. P.; Herzberg, G. "Constants of Diatomic Molecules"; van Nostrand: New York, 1979.
 (18) McLean, A. D.; Liu, B.; Chandler, G. S. J. Chem. Phys. 1984, 80 , 5130.

[^3]: (19) Maxwell, L. R.; Hendrichs, S. B.; Mosley, V. J. Chem. Phys. 1935, 3, 699 .

[^4]: (20) Baudler, M. Angew. Chem. 1982, 94, 520.
 (21) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
 (22) The present analysis is related to the semiempirical LCBO (linear combination of bond orbitals) method. For a recent article we refer to: Wesenberg, G.; Weinhold, F. Int. J. Quant. Chem. 1982, 21, 487.
 (23) This was achieved by a generalized contraction of the 7 p basis to 3 CGTOs representing the SCF 2 pAO and the 3 pAO in a split valence contraction. All symmetry orbitals arising from 2 p AOs were kept but from the 3 p AO only those corresponding to $\sigma(3 \mathrm{p})$ orbitals were included in the basis.

[^5]: (24) Boys, S. F. Rev. Mod. Phys. 1960, 32, 296.
 (25) Davidson, E. R. J. Chem. Phys. 1967, 46, 3320.
 (26) Roby, K. R. Mol. Phys. 1974, 27, 81.
 (27) Heinzmann, R.; Ahlrichs, R. Theor. Chim. Acta 1976, 42, 33.
 (28) Ehrhardt, C.; Ahlrichs, R. Theor. Chim. Acta 1985, 68, 231.

